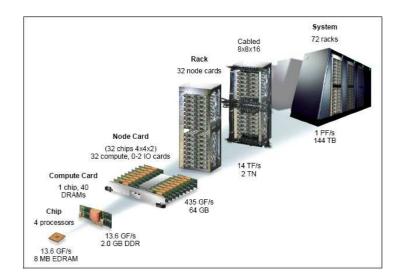


Supercomputing Applications in Life Sciences

Svetozar Margenov

Institute for Information and Communication Technologies, Bulgarian Academy of Sciences

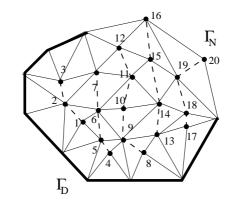


Supercomputing Applications in Life Sciences - p. 1/17

2007 - Blue Gene/P is installed at the Bulgarian Supercomputing Centre

- Atanasoff has been familiar with the numerical method of Ritz leading for his problem to a system of 29 linear algebraic equations.
- Such computations have required many weeks efforts using the Monroe manual rotary Calculator.
- Atanasoff has tried to run several Monroe machines in parallel rotated by a common handle.
- Finally, with a grant of \$650 Atanasoff and Berry have created the prototype of the ABC computer in 1939.

B. Sendov, John Atanasoff, The Electronic Prometheus, St. Kliment Ohridski University Press, 2003


Finite elements method (FEM)

Consider the weak formulation of a given elliptic b.v.p. in the form

$$a(u,v) = \mathcal{F}(v), \quad \forall v \in \mathcal{V},$$

and the related FEM problem

$$a_h(u_h, v_h) = \mathcal{F}_h(v_h), \quad \forall v_h \in \mathcal{V}_h.$$

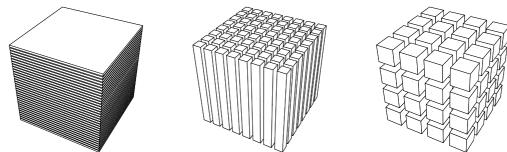
We are interested in the efficient solution of the resulting large-scale FEM linear systems

$$A\mathbf{u} = \mathbf{f}.$$

Supercomputing Applications in Life Sciences - p. 4/17

PCG scalability

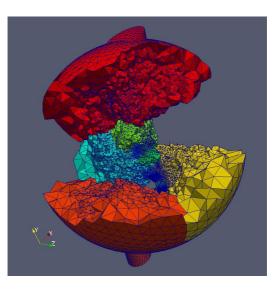
- For large-scale problems, the iterative methods have advantages due to their better/optimal computational complexity and storage requirements.
- The Conjugate Gradient (CG) method is the best iterative solution framework for large scale FEM systems.
- The development of robust Preconditioned Conjugate Gradient (PCG) methods and their parallel implementation is a hot topic in SuperCA.


$h^{-2} pprox N$	DIRECT	CG	PCG-MILU	PCG-AMLI-V	PCG-AMLI-W
1 024	0.02	0.05 (84)	0.04 (21)	< 0.01 (16)	< 0.01 (16)
4 096	0.17	0.12 (163)	0.09 (30)	0.02 (18)	0.02 (17)
16 384	2.21	0.91 (320)	0.52 (46)	0.09 (22)	0.09 (17)
65 536	30.08	9.2 (630)	3.8 (68)	0.49 (25)	0.45 (17)
262 144	*	81.6 (1 256)	27.8 (102)	2.7 (28)	2.3 (17)
1 048 576	*	805 (2 439)	214 (152)	13.3 (31)	10.5 (17)
complexity	$O(N^2)$	$O(N^{3/2})$	$O(N^{5/4})$	$O(N \log N)$	O(N)

Solution time in seconds (and n_{it}) for Poisson equation on a unit square

BoomerAMG parallel scalability

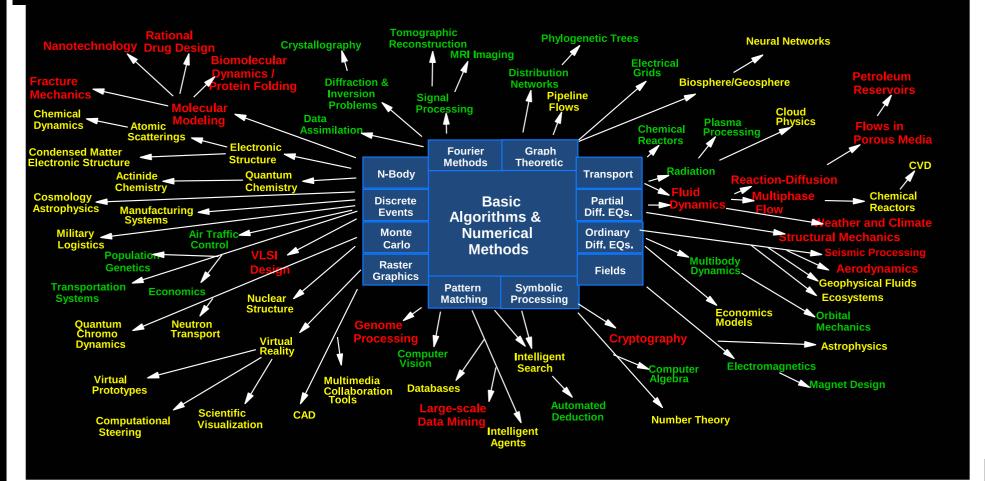
Figure: 1D, 2D and 3D partitioning: voxel triangulation of a cubic domain


Parallel numerical tests based on BoomerAMG solver for a parabolic problem in a cubic space domain, voxel FEM mesh, and 96 implicit backward Euler time steps, are given bellow.

Parallel scalability					
Mesh	$N_p = P_x \times P_y \times P_z$	N	N _{it}	T(p) [s]	E(p)
127 x 127 x 127	8 = 8 x 1 x 1	2 097 152	161	1 255.00	
255 x 255 x 255	64 = 64 × 1 × 1	16 777 216	1 <i>2</i> 8	5 951.08	21 %
511 x 511 x 511	512 = 512 x 1 x 1	134 217 728	-	> <i>24</i> h	<2%
127 x 127 x 127	$8 = 4 \times 2 \times 1$	2 097 152	167	1 137.83	
255 x 255 x 255	$64 = 8 \times 8 \times 1$	16 777 216	1 <i>2</i> 9	1 203.29	95 %
511 x 511 x 511	512 = 32 x 16 x 1	134 217 728	114	1 581.13	72 %
127 x 127 x 127	$8 = 4 \times 2 \times 1$	2 097 152	167	1 137.91	
255 x 255 x 255	$64 = 4 \times 4 \times 4$	16 777 216	1 <i>2</i> 8	1 062.30	107 %
511 x 511 x 511	512 = 8 x 8 x 8	134 217 728	114	1 155.08	99 %

Parallel FEM tools

- mesh generation (NetGEN)
- **J** domain partitioning (ParMETIS, SCOTCH)
- parallel solver (BoomerAMG)
- parallel Multiphysics ELMER



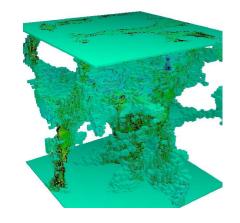
Domain/graph partitioning of unstructured mesh for 16 processors

Supercomputing applications

Good Better Best

Argonne National Labs GBB

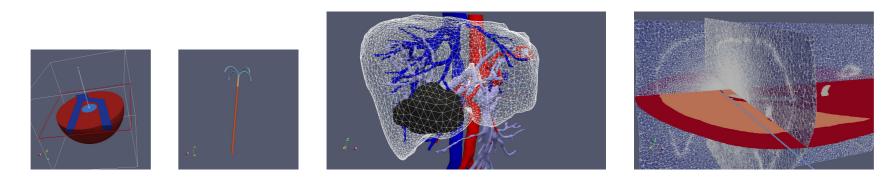
Bone microstructure


FEM analysis with NC Rannacher-Turek FEs is applied in a voxel setting.

solid skeleton at micro level \Rightarrow anisotropic tensor at macro level.

MIC(0) and BoomerAMG in combination with Displacement Decomposition.

		$\zeta = 0.1$			
		MIC(0)		AMG	
$\mid n$	p	T[s]	It	T[s]	It
64	1	1 184	270	1 071	28
128	8	1 831	395	1 147	25
256	64	4 870	888	1 318	25

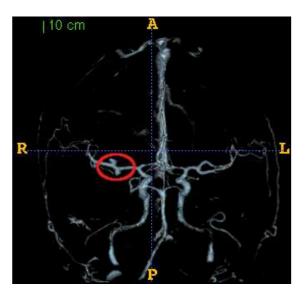

		$\zeta = 0.01$		
		MIC(0)		AMG
$\mid n$	p	T[s]	It	T[s] It
64				2 384 63
128	8	4 905	1 060	2 860 63
256	64	10 177	1 863	2 715 52

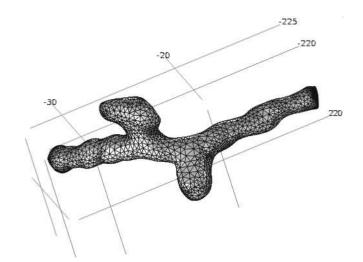
		$\zeta = 0.001$			
		MIC(0)		AMG	
n	p	T[s]	It	T[s]	It
64	1	4 477 [•]	1 022	4 412	117
		9 626 2			
256	64	16 182 2	2 965	6 939	102

RF tumor ablation

The RF ablation destroys the unwanted tissue by heating, arising when the energy dissipated by the electric current flowing through the RF probe is converted to heat.

	Degrees of freedom (DOF)				
n_p	2 097 152	16 777 216	134 217 728		
32	1 788				
64	884				
128	457				
256	250	1 880			
512	165	1 107			
1 024	155	667			
2 048	387	708	3 340		

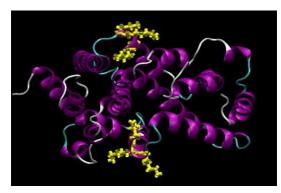

Parallel times T[s] for simulation of 8' of HTA with time step of 1"

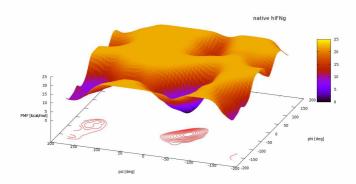


Cerebral aneurysms

Towards realistic simulation of cerebral aneurysms:

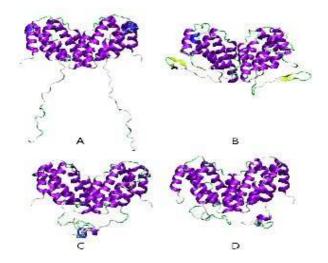
- Patient specific computed tomography data
- Parallel software tools for CFD simulation



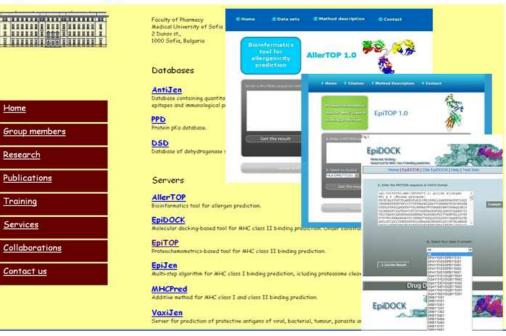


Human interferon gamma

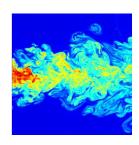
- The structural stability of 100 hIFNg mutants with 3 random mutations in the upstream NLS (aa 86-89) are studied using metadynamics based on collective variables the backbone dihedral angles of the 86-th amino acid.
- The free energy profile of the native and mutated forms of the protein are reconducted by comparing the profiles to the native form.

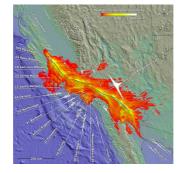


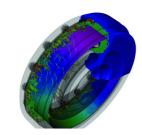
Conformation of C-terminus

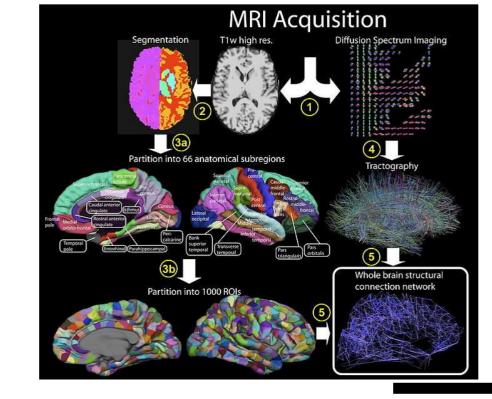

- The length of the tail modifies the affinity to the receptor.
- Two 200 ns MD folding simulations are performed using GROMOS 53a6 + GROMACS 4.5.4 and CHARMM 22 + NAMD 2.9 to cluster the trajectories.
- It was found that in both cases the C-Termini get closer to the globule and the whole protein adopts more compact conformation.

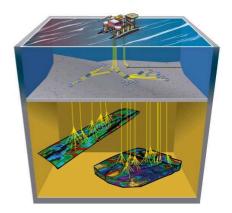
In silico drug design


- Structure-based methods for drug design are used to develop models for allergenicity and immunogenicity predictions of novel proteins.
- Molecular dynamics simulations and molecular docking studies are applied on BlueGene-P to derive the models.
- Once the models are derived, they are freely accessible via the web site:




http://www.ddg-pharmfac.net




Advanced SC applications

Supercomputing in Blue

- Blue Gene/P: 4 x 3D Torus:
- Blue Gene/Q: 32 x 5D Torus
- Blue Water: diam = 4

Theory and practice

- There is nothing so practical as the good theory."
 Kurt Lewin
- In theory, theory and practice are the same. In practice, they are not.
 Albert Einstein

THANK YOU !

Acknowledgments:

- AComIn: "Advanced Computing for Innovation", Grant 316087, FP7 Capacity Programme
- SuperCA++: "CoE on Supercomputing Applications", Bulgarian NSF Grant DCVP 02/1

